You are hereglobal change

global change


Overview sticky icon

Human activities are altering global carbon (C) and nitrogen (N) cycles at an unprecedented rate.  It is unclear how significant changes in global elemental cycles will affect ecosystem functions, such as primary productivity or C storage over the long-term.  My research aims to understand how plant-microbe interactions mediate ecosystem-specific responses to global climate change.  This research connects microbial processes to ecosystem functions to yield new insights into microbial ecology and elemental cycling.  Research in my laboratory focuses on three main question

Global change impacts on C storage and N cycling

A major focus of my research is to understand not only how the relationship between plant and microbial communities vary among ecosystems, but also to understand how these relationships are altered by global change. Specifically, my research has focused on how increased elevated atmospheric O3 and CO2 affect plant-microbe interactions. The significance of global change for biogeochemical cycling is well recognized at broad scales, but the microbial mechanisms that regulate ecosystem responses to global change are not well understood.

Secondary Links