You are hereCarbon


Disentangling plant and soil microbial controls on carbon and nitrogen loss in grassland mesocosms


It is well known that plant–soil interactions play an important role in determining the impact of global change phenomena on biodiversity and ecosystem functioning. Little is known, however, about the individual and relative importance for carbon (C) and nitrogen (N) cycling of non-random changes in plant and soil communities that result from global change phenomena, such as fertilization and agricultural intensification.

Averill C. 2014. Divergence in plant and microbial allocation strategies explains continental patterns in microbial allocation a


Divergence in plant and microbial allocation strategies explains continental patterns in microbial allocation and biogeochemical fluxes


Fellbaum et al. 2014 Fungal nutrient allocation is regulated by C source strength of host plant. New Phytologist

Fellbaum et al. 2014 Fungal nutrient allocation in common mycorrhizal networks is regulated by the carbon source strength of individual host plants. New Phytologist pre-print


Common mycorrhizal networks (CMNs) of arbuscular mycorrhizal (AM) fungi in the soil simultaneously provide multiple host plants with nutrients, but the mechanisms by which the nutrient transport to individual host plants within one CMN is controlled are unknown.

New Phytologist Virtual Issue: Scaling root processes

Some of the papers are already posted but the whole issue might be of interests to many of us.

Plant rhizosphere influence on microbial C metabolism: the role of elevated CO2, N availability and root stoichiometry

Yolima Carrillo • Feike A. Dijkstra •
Elise Pendall • Dan LeCain • Colin Tucker

Abstract Microbial decomposer C metabolism is
considered a factor controlling soil C stability, a key
regulator of global climate. The plant rhizosphere is
now recognized as a crucial driver of soil C dynamics
but specific mechanisms by which it can affect C
processing are unclear. Climate change could affect
microbial C metabolism via impacts on the plant
rhizosphere. Using continuous 13C labelling under

Xu et al. 2013. Global analysis of soil microbial biomass C, N, P

Xu et al. 2013. A global analysis of soil microbial biomass carbon, nitrogen and phosphorus in terrestrial ecosystems. Global Ecology and Biogeography 22:737-749.

Main conclusions

Reichstein et al. 2013. Climante Extremes and the C Cycle. Nature

The terrestrial biosphere is a key component of the global carbon cycle and its carbon balance is strongly influenced by climate. Continuing environmental changes are thought to increase global terrestrial carbon uptake. But evidence is mounting that climate extremes such as droughts or storms can lead to a decrease in regional ecosystem carbon stocks and therefore have the potential to negate an expected increase in terrestrial carbon uptake.

Secondary Links