You are hereMicrobial drivers of global change at the aggregate scale: linking genomic function to carbon metabolism and warming

Microbial drivers of global change at the aggregate scale: linking genomic function to carbon metabolism and warming


Co-PI: Adina Howe, Folker Meyer, Galya Orr

Understanding and accurately predicting the microbial cycling of carbon in soil environments has been challenged by our ability to associate microbial community dynamics into ecosystem-scale biogeochemical models. Soil fractionation techniques provide an opportunity to examine intact microbial communities in a context that is relevant to both microbial community metabolism and ecosystem processes. We propose to develop approaches that target metabolically active microorganisms and functions that drive carbon cycling in soils from bioenergy cropping systems. With the combined expertise and support of the Pacific Northwest National Laboratory Environmental Molecular Sciences Laboratory Cell Isolation and Systems Analysis group and the Argonne National Laboratory Computational Biology Cluster, we aim to employ transcriptomics, genome sequencing, carbon metabolite labeling, cell sorting, and cell isolation methods to access the key organisms involved in soil carbon cycling (e.g. cellulose decomposition) in soil aggregate fractions.

Secondary Links